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ABSTRACT
Intent detection can be tackled in several ways in NLP. Standard
Full-Data classifiers demand thousands of labeled examples, which
is impractical in data-limited domains. Few-shot methods offer an
alternative, utilizing modern contrastive learning techniques that
can be effective with as little as 20 examples per class. Similarly,
generative Large Language Models (LLMs) like GPT-4 can perform
effectively with just 1-5 examples per class. However, the trade-
offs between performance and costs for these approaches remain
under-explored, a critical concern for budget-limited organizations.
Our work addresses this gap by offering a study of the aforemen-
tioned approaches over the Banking77 financial intent detection
dataset, including the evaluation of cutting-edge LLMs by Ope-
nAI, Cohere, and Anthropic in a comprehensive set of few-shot
scenarios. We complete the picture with two additional methods:
first, a cost-effective querying method for LLMs based on retrieval-
augmented generation, which is able to reduce operational costs
up to 22 times compared to classic few-shot approaches, and sec-
ond, a data augmentation method using GPT-4, which is able to
improve performance and offers benefits in resource-limited scenar-
ios. Finally, to inspire future research, we provide a human expert’s
curated subset of Banking77, along with extensive error analysis.
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1 INTRODUCTION
The field of Natural Language Processing (NLP) has seen impressive
advancements in the past few years, with particular emphasis on
text classification. Traditional full-data classifiers require thousands
of labeled samples, making them infeasible for data-limited domains
such as finance [5]. Modern Few-Shot techniques, which include
contrastive learning [40], aim to alleviate this issue by requiring
only 10 to 20 examples per class. Also, recent advancements focus
on prompting large LanguageModels (LLMs) like GPT-3 with as few
as 1-5 examples per class, typically via a managed API. However, the
tradeoffs concerning the performance and Operating Costs (OpEx)
of available methods remain under-explored.

In this paper, we bridge this gap by evaluating the aforemen-
tioned approaches in a comprehensive set of few-shot scenarios
over a financial intent classification dataset, Banking77 [5], includ-
ing the evaluation of cutting-edge LLMs by OpenAI, Cohere, and
Anthropic. Banking77 is a real-life dataset containing customer
service intents and their classification labels. Contrary to other in-
tent detection datasets, Banking77 contains a large number (77) of
labels with semantic overlaps (Table 1). These characteristics make
it suitable for investigating methodological perspectives while, at
the same time, solving a business use case.

First, we fine-tune MPNet [38], a pre-trained Masked Language
Model (MLM) by providing it with the complete dataset (Full-Data
Setting with ∼10k training examples). Second, we fine-tune MP-
Net again, but this time, we use SetFit [40], a contrastive learning
technique that can achieve comparable results when shown only
up to 20 examples per class (Few-Shot), instead of the complete
dataset. Third, we leverage in-context learning with a wide range
of popular conversational LLMs, including GPT-3.5, GPT-4, and
Cohere’s Command and Anthropic’s Claude. We provide the LLMs
with only 1 and 3 examples per class (Few-Shot), which we assume
is practical from a business perspective in data-limited domains
like finance [26]. In this setting, we also demonstrate that curated
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Financial Intent Label

My card was declined. Declined Card Payment
It declined my transfer. Declined Transfer
How do you calculate your exchange rates? Exchange Rate
My card was eaten by the cash machine. Card Swallowed
I lost my card in the ATM. Card Swallowed
I got married, I need to change my name. Edit Personal Details
... ...
My card is needed soon. Card Delivery Estimate
What is the youngest age for an account? Age Limit

Table 1: Example financial intents and their labels from the
Banking77 dataset. In total, there are 77 different labels in
the dataset with highly overlapping semantic similarities.

samples picked by a hired human expert outperform randomly
selected ones with up to 10 points difference. Overall, we show that
in-context learning with LLMs can outperform fine-tuned masked
language models (MLMs) in financial few-shot text classification
tasks, evenwhen presented with fewer examples. Since this solution
does not require the setup of GPUs, extensive technical expertise,
or a large volume of available data, it brings significant value to the
financial industry, where resource constraints often exist.

Apart from studying performance, we also present a cost analysis
on employing LLMs. Motivated by this, we extend our study with a
cost-effective LLM inferencemethod based on Retrieval-Augmented
Generation (RAG) that reduces costs significantly, enabling small
organizations to leverage LLMs without incurring substantial ex-
penses. We demonstrate that with this approach, we retrieve only a
tiny but crucial fraction (2.2%) of examples compared to the classic
few-shot settings, and we are able to surpass the performance of
the most competitive method (GPT-4) by 1.5 points while costing
700$ less in the context of the test set (∼3k examples). Furthermore,
we simulate a low-resource data scenario, where we augment the
training dataset by leveraging GPT-4, demonstrating improved per-
formance. We also analyze the threshold where data augmentation
loses effectiveness, aiding AI practitioners in their decision-making.

To the best of our knowledge, this is the first study that presents
together a comprehensive evaluation of such methods in a resource-
limited industrial context, where data and budget availability are
key factors.

2 RELATEDWORK
2.1 Studies on Banking77
Casanueva et al. [5] introduced Banking77 and achieved baseline ac-
curacy scores of 93.6% and 85.1% for Full-Data and 10-shot settings
by fine-tuning BERT [12] and using Universal Sentence Encoders
[6]. Ying and Thomas [45] later improved these results by address-
ing label errors in the dataset, utilizing confident learning and cosine
similarity approaches for mislabeled utterance detection [29]. Their
trimmed dataset yielded a significant performance boost, with a
92.4% accuracy and 92.0% F1 score. Li et al. [21] demonstrated that
pre-training intent representations can improve performance in
financial intent classification. They achieved an 82.76% accuracy
and 87.3% Macro-F1 score on the Banking77 Full-Data benchmark
using prefix-tuning and fine-tuning of the last LLM layer. Lastly,
Mehri and Eric [28] proposed two dialogue system text classification

Banking77 Statistics Train Test

Number of examples 10,003 3,080

Average length (in characters) 59.5 ± 40.9 54.2 ± 34.7

Average length (in words) 11.9 ± 7.9 10.9 ± 6.7

Number of intents (classes) 77 77
Table 2: Banking77 dataset statistics. The average lengths are
shown along with their corresponding standard deviations.

approaches: "observers" and example-driven training. Observers
offered an alternative to the [CLS] token for semantic representa-
tion and their example-driven training method leveraged sentence
similarity for classification. They achieved an accuracy of 85.9% in
the 10-shot setting and 93.8% in the Full-Data setting.

2.2 Few-Shot Text Classification
Learning from only a few training instances is crucial, especially in
real-world use cases where there is no prior dataset and typically
there are limited or no resources to create one. In such cases with
very limited data, fine-tuning often performs poorly [13] and actu-
ally becoming more challenging as language models grow in size.
An alternative approach is in-context learning [4], which involves
prompting a generative large language model (LLM) with a con-
text and asking it to complete NLP tasks without fine-tuning. The
context usually includes a brief task description, some examples
(the context), and the instance to be classified. The idea behind
in-context learning is that the language model has already learned
several tasks during pre-training, and the prompt attempts to iden-
tify the appropriate one [36]. However, selecting the right prompt
is not easy as language models cannot understand the meaning of
the prompt [42]. To address this issue, LLMs have been fine-tuned
to follow human instructions [30, 31]. Despite this improvement,
in-context learning is still correlated by term frequencies encoun-
tered during pre-training [35]. At the same time, instruct-tuned
LLMs (like GPT-3.5 and GPT-4 by OpenAI), carry the biases of the
human annotators who provided the training instructions. To over-
come these challenges, prompt-tuning has emerged as a promising
research direction [17, 19].

3 TASK AND DATASET
Intent detection is a particular case of text classification, and it
is a vital component of task-oriented conversational systems in
various domains, including finance. It reflects the complexity of
actual commercial systems, which can be attributed to the partially
overlapping intent categories, the need for fine-grained decisions,
and the lack of comprehensive datasets in finance [5, 26, 27, 47].

However, publicly available intent detection datasets are limited,
and the existing ones fail to represent the complexity of real-world
industrial systems [3, 11]. In response to the need for industry-ready
datasets [18, 24], PolyAI released Banking77 [5], which focuses on
a single domain and consists of 77 fine-grained intents related to
banking. By concentrating on a specific domain and offering a
diverse set of intents, the dataset emulates a more realistic and chal-
lenging intent detection task thanmost generic benchmarks. Also, it
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is worth noting that some intent categories partially overlap, requir-
ing fine-grained decisions that cannot rely solely on the semantics
of individual words, further highlighting the task’s difficulty.

The dataset comprises 13,083 annotated customer service queries
labeled with 77 intents and is split into two subsets: train (10,003
examples) and test (3,080 samples) (Table 2). The label distribution is
heavily imbalanced in the training subset (Figure 1), demonstrating
the challenge of developing classifiers in the Full-Data setting.1

Figure 1: Class distribution of the 77 intents in the training
set. Intent indices are shown instead of tag names for brevity.

4 METHODOLOGY
4.1 Fine-tuning MLMs
MPNet [38] is a transformer-based model [12, 41] designed with a
unique pre-training objective, employing permuted language mod-
eling to capture token dependencies and utilizing auxiliary position
information as input. Pre-trained on a substantial 160GB text cor-
pora,MPNet demonstrates superior performance compared to BERT
[12], XLNet [44], and RoBERTa [25] across various downstream
tasks. We utilize all-mpnet-base-v22, a top-performing variation
of MPNet in the sentence transformers leaderboard, making it a
prominent choice for our task.3

4.2 Few-Shot Contrastive Learning with SetFit
SetFit [40] is a recent methodology developed by HuggingFace
which fine-tunes a Sentence Transformer model on a minimal num-
ber of labeled text pairs for each class.4 SetFit utilizes contrastive
learning [9] in a Siamese manner, where positive and negative pairs
are constructed by in- and out-class selection. As a result, transform-
ers using SetFit produce highly descriptive text representations,
where a classification head is later trained on. Despite using limited
training data (such as eight training examples per class), Tunstall
et al. showed that SetFit’s performance is comparable to models
trained on complete datasets with standard fine-tuning [40].

4.3 In-Context Learning
For in-context learning, we use closed-source LLMs like GPT-3.5
[30] andGPT-4 [31], which are based on the Generative Pre-trained
1The test subset comprises 40 instances for every label.
2https://huggingface.co/sentence-transformers/all-mpnet-base-v2
3https://www.sbert.net/docs/pretrained_models.html
4https://github.com/huggingface/setfit

Transformer (GPT) [33, 34]. Such recent models, after their pre-
training, are additionally trained to follow instructions with Re-
inforcement Learning from Human Preferences (RLHF) [10, 32].
GPT-3.5 is a 175B-parameter model and, at the time of the writing,
has 2 variants able to consume a context of 4,096 and 16,384 tokens.
GPT-4 is a multi-modal model, with 2 variants available, able to
consume 8,192 and 32,768 tokens.5 We also used Cohere’s Com-
mandmodel with a context window of 4,096 tokens andAnthropic
Claude models with a context window of 100,000 tokens.6

4.4 Human Expert Annotation for Robustness
Casanueva et al. [5] discovered class overlaps in creating Banking77.
To address this issue, previous studies like Ying and Thomas [45]
used additional annotation to curate subsets and enhance perfor-
mance on real-life noisy datasets like Banking77. However, they
did not share their curated subset for reproducibility.

To tackle these challenges, we curated a subset of Banking77 by
hiring a subject matter expert. We provided the human expert with
10, randomly-picked examples per class, and they selected the top
3 based on their alignment with the corresponding intents. This
meticulous approach reduced class overlaps and ensured the high
relevance of each example to its intended label. As we show later,
this is fundamental in the few-shot scenario since these expert-
selected training instances outperform randomly selected instances
per class. To support robust financial research, we provide this
curated subset as a free resource for the financial AI community.7

5 EXPERIMENTS & RESULTS
5.1 Experimental Setup
For thefine-tuningmethods, we use TensorFlow and HuggingFace.
For all in-context learning methods, we instruct the model to
return only the financial intent label of the test example that is
presented in each query.8 The prompt we use can be broken down
into 3 parts and is the same for all LLMs, i.e., GPT-3.5 and GPT-4
(OpenAI),9 Command (Cohere), and Claude (Anthropic). The first
part contains the description of the task and the available classes.
The second provides a few examples, and the third presents the
text to be classified:

5OpenAI has not disclosed the architecture of GPT-4.
6See https://cohere.com/ and https://www.anthropic.com/
7The curated dataset is available at https://anonymous.4open.science/api/repo/data-
prompt-4805/file/best3_train.csv?download=true
8Before proceeding with closed-source LLMs, we prompted and questioned them to
verify that the Banking77 dataset was not included in their pre-training data.
9We use the available gpt-3.5-turbo variants of 4K and 16K contexts for the 1-
shot and 3-shot settings accordingly, and the gpt-4 8K context model, which is less
expensive than the 32K one. In all cases we use the 0613 releases.

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://www.sbert.net/docs/pretrained_models.html
https://github.com/huggingface/setfit
https://cohere.com/
https://www.anthropic.com/
https://anonymous.4open.science/api/repo/data-prompt-4805/file/best3_train.csv?download=true
https://anonymous.4open.science/api/repo/data-prompt-4805/file/best3_train.csv?download=true
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You are an expert assistant in the field of customer service.
Your task is to help workers in the customer service
department of a company.
Your task is to classify the customer's question in
order to help the customer service worker to answer
the question.
In order to help the worker, you MUST respond
with the number and the name of one of the
following classes you know.
If you cannot answer the question, respond: "-1 Unknown".
In case you reply with something else, you will be penalized.

The classes are:
0 activate_my_card
1 age_limit
.. ..
75 wrong_amount_of_cash_received
76 wrong_exchange_rate_for_cash_withdrawal

Here are some examples of questions and their classes:
How do I top-up while traveling? automatic_top_up
How do I set up auto top-up? automatic_top_up
... ...
It declined my transfer. declined_transfer

How do I locate my card?

5.2 Hyperparameter tuning in MLMs
We tuned the MLM (MPNet-v2) using Optuna’s [1] implementation
of the Tree-structured Parzen Estimator (TPE) algorithm [2]. We
specified 10 trials, and we defined a search space of (1e-5, 5e-5) for
the body’s learning rate and (1e-2, 5e-5) for the head’s learning
rate with logarithmic intervals. During tuning, we maximized the
validation Micro-F1. We deployed the MLM pipelines in an NVIDIA
A100 SXM GPU with 40GB memory.

5.3 Prompt Engineering in LLMs
We experiment with two different prompt settings using GPT-4 in
a 3-shot setting on a held-out validation subset, which was created
by using 5% of the training subset. In the first setting, we include
the few-shot examples as part of the chat history, i.e., the query
is presented as a user message and the class is presented as an
assistant message that follows. In the second setting, we include
the few-shot examples in the so-called system, which is intended
to give an initial context to the assistant. The second setting yielded
the best results (Table 3), and we proceed to use it for the rest of
our experiments.

Few-shot examples given as µ-F1 m-F1
Previous chat history 75.5 74.4
System context 77.7 77.0

Table 3: Validation Micro-F1 and Macro-F1 scores for our two
prompt settings with GPT-4 in the 3-Shot scenario.

Methods Setting µ-F1 m-F1

Mehri and Eric [28] Full-Data 93.8 NA
Mehri and Eric [28] 10-shot 85.9 NA
Ying and Thomas [45] Full-Data NA 92.0

MPNet-v2 Full-Data 94.1 94.1

MPNet-v2 (SetFit) 1-shot 57.4 55.9
Cohere Command 1-shot 44.9 46.5
Anthropic Claude 1-shot 73.8 72.1
GPT-3.5 (representative samples) 1-shot 75.2 74.3
GPT-3.5 (random samples) 1-shot 74.0 72.3

MPNet-v2 (SetFit) 3-shot 76.7 75.9
GPT-3.5 (representative samples) 3-shot 65.5 65.3
GPT-4 (representative samples) 3-shot 83.1 82.7
GPT-4 (random samples) 3-shot 74.2 73.7

MPNet-v2 (SetFit) 5-shot 83.5 83.3
MPNet-v2 (SetFit) 10-shot 88.1 88.1
MPNet-v2 (SetFit) 15-shot 90.6 90.5
MPNet-v2 (SetFit) 20-shot 91.2 91.3

Table 4: Classification results for all models on the test data,
with N-Shot indicating the number of samples used during
training. The MPNet model is fine-tuned without the SetFit
method on the Full-Data setting.

5.4 Results
To comprehensively understand how accurately the models can
perform, we report micro-F1 (µ-F1) and macro-F1 (m-F1). Table 4
shows MPNet-v2 achieving competitive results across all few-shot
settings using SetFit. When trained on only 3 samples, it achieves
scores of 76.7 µ-F1 and 75.9 m-F1. As we increase the number of
samples, the performance improves, reaching a 91.2 micro-F1 and
91.3 macro-F1 score with 20 samples. This is only 3 percentage
points (pp) lower than fine-tuning the model with all the data,
demonstrating the effectiveness of SetFit, especially in domains
where acquiring data points is difficult. Lastly, our MPNet-v2 solu-
tion outperforms the previous results from [28], both in the 10-shot
and Full-Data settings (by 2.2 pp and 0.3pp).

Despite being presented with only 1 sample per class (either
random or representative), GPT-3.5 achieves competitive results
(74.0 and 75.2 µ-F1). It outperforms MPNet-v2 by a large margin
(over 17 pp) in this 1-shot setting, showing the potential for ef-
fective few-shot text classification in the financial domain where
data are not always readily available [26]. As expected, using our
human-curated representative samples leads to better in-context
learning results. We also employed two alternative closed-source
LLMs by Cohere and Anthropic on the representative samples.
Cohere’s Command performs poorly with a low 44.9 µ-F1 score
while Anthropic’s Claude with a 73.8 µ-F1 performs comparable to
GPT-3.5’s 75.2 µ-F1.

GPT-4 also shows potential for few-shot text classification, out-
performing both previous models on the 3-shot setting by more
than 6 pp (MPNet-v2) and 17 pp (GPT-3.5). More notably, the less
powerful engine of GPT-3.5, performs poorly on its 3-shot variant
(65.5 µ-F1) compared to its promising 1-shot variant (75.2 µ-F1).
This probably verifies recent reports on GPT-3.5 getting lost in the
middle of long contexts [23]. Similarly to the 1-shot experiments
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with GPT-3.5, the performance of GPT-4 drops substantially (ap-
proximately 9 pp) when trained on random samples as opposed to
when trained on the human-curated representative ones. Thus, at
least in this complex financial text classification task, it is better
to present more examples to a more powerful engine like GPT-4
instead of GPT-3.5.

6 COST-EFFECTIVE LLM INFERENCE USING
RETRIEVAL-AUGMENTED GENERATION

6.1 Cost Analysis
Apart from studying the models’ performance, we investigate the
significant Operating Costs (OpEx) associated with popular LLMs
like GPT-4. We provide a budget analysis for our experiments in
Table 5 (cost refers to ∼3k instances). This can be seen as a guideline
for researchers and practitioners to evaluate the trade-offs between
performance and budget when selecting a closed-source LLM of-
fered via a managed API, as well as a data point when deciding
between a “build vs. buy” approach, which requires developing
datasets and setting up and hosting their own custom model.

Model Setting Micro-F1↑ Cost↓
GPT-3.5 1-shot 75.2 31$
Anthropic Claude 1-shot 73.8 15$
Cohere command 1-shot 44.9 22$

GPT-3.5 3-shot 65.5 62$
GPT-4 3-shot 83.1 740$

GPT-4 5 similar (RAG) 84.5 205$
Anthropic Claude 5 similar (RAG) 84.8 33$

GPT-4 10 similar (RAG) 81.2 230$
Anthropic Claude 10 similar (RAG) 85.2 37$

GPT-4 20 similar (RAG) 87.7 270$
Anthropic Claude 20 similar (RAG) 85.5 42$

Table 5: Cost analysis of various closed-source LLMs. The first
two groups represent the 1- and 3-shot results, as shown in
Section 5.4 (Results). The rest groups come from Section 6.2,
where we utilize Retrieval-Augmented Generation (RAG) for
cost-effective LLM inference. We perform 3,080 queries to
each LLM, i.e., 1 query per sample in the test set.

Focusing on the two upper groups of the table, we see how
popular LLMs perform in the financial intent detection task of
Banking77 in a standard few-shot approach. We observe that in the
1-shot setting, Anthropic Claude has a performance that comes on
par with the GPT-3.5 model and comes at half of GPT-3.5’s cost. In
the 3-shot setting, GPT-4 scores nearly 20 points more than GPT-3.5,
but comes with a 10x cost, that amounts to 740$.10

6.2 Retrieval-Augmented Generation (RAG)
Motivated by the high costs associated with closed-source LLMs,
we present a methodology to query LLMs efficiently by creating a
10We were motivated to experiment with Anthropic’s Claude in a 3-shot setting since
it showed great potential in the 1-shot setting, but our budget for experimentation
was limited. Thus, we proceeded with the most promising models as our “best bets”.

Retriever component before plugging it into our Generative Text
Classifier (Reader) pipeline.

In the standard few-shot setting, we provide examples for all
intents; e.g., in the 3-shot setting, we use a prompt with 231 samples
(3 samples x 77 classes) as context in each inference call to the LLMs.
However, our intuition is that a subset of them can be sufficient,
allowing room for a cost-effective approach by narrowing down
the number of representative examples used in each inference call.

Thus, we consider including only the most similar examples to
be utilized during each inference call. This is based on the active
learning algorithms proposed by Lewis et al. and Liu et al., who
augment in-context examples for text generation language models
using kNN. The rationale is: for each inference sentence to be
classified, instead of providing all the 231 examples for the classes
inside the prompt, we provide only the 5 (2.2%), 10 (4.3%), and 20
(8.7%) most similar examples, as shown in Figure 2. We use the
all-mpnet-base-v2 vector embeddings and the cosine similarity
metric for the distance calculation.

Figure 2: Dynamic LLM prompt construction through
Retrieval-Augmented Generation (RAG), using cosine simi-
larity for in-context data selection. We use K=5, 10, 20.

The results of this approach, as seen in the three lower groups
of Table 5, show improved results both in performance and budget.
For instance, when we retrieve only five similar instances (2.2% of
the 231 total examples) for each inference call, Anthropic’ Claude
has an 84.8 µ-F1 vs. GPT-4’s 84.5. At the same time, it costs 172$
less (1/6 of GPT-4’s cost). Most importantly, this score is also higher
than 1.5 percentage points than GPT-4 in the classic 3-shot setting,
which costs 740$ and is 22 times multiple of its cost.

By increasing the retrieved similar samples to 10 and 20, we
see a slight increase to a maximum of 87.7% µ-F1 for GPT-4 (270$)
and 85.5% µ-F1 of Claude (42$). Anthropic’s Claude is consistent
in improving over the number of retrieved examples, while GPT-4
shows a slight drop in performance when presented with 10 similar
examples vs. 5 similar examples. One possible explanation for this
behavior is that it may be due to the specific LLM checkpoints’
volatility in results, as reported very recently in various tasks [8].
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7 LLMS FOR DATA GENERATION IN
LOW-RESOURCE SETTINGS

Data-centric AI is increasingly gaining attentions as evidenced by
relevant scientific venues.11 Such approaches become invaluable in
areas where collecting vast quantities of data is either infeasible, pro-
hibited by privacy constraints, or challenging such as in finance.12
They focus on maximizing the utility of limited datasets rather than
only focusing on scaling up model complexity (model-centric AI),
which is often impractical to maintain or deploy [15, 16].

In line with this low-resource paradigm, we simulate a scenario
where our dataset is limited. We assume that providing 3 examples
per class is feasible in practice, we start with the 231 original hand-
picked examples from the expert (3 per each of the 77 classes), and
we leverage GPT-4 to generate additional examples per class. The
intention here is to explore howmuchwe can rely to data augmenta-
tion to increase the performance, and identify the threshold beyond
which the quality of generated examples starts to degrade, and thus,
we cannot continue with adding more (artificial) examples.

While past existing studies show that just writing simple prompts
boost performance on various classifications tasks, they come short
due to two reasons: (a) they consider vanilla tasks with up to 6
classes (where in our scenario, we consider 77) [46] and (b) they
use older text generation models rather than instruct-based LLMs.

Since Sahu et al. found that data augmentation for tasks with
large label volume is likely to not benefit at all (at least when using
older text generation models), we adopt a particular prompt tem-
plate for our instruct-based GPT-4 model. First, we analyze the data
using Azimuth [14], an open-source toolkit. We split the 77 labels
into ten groups, where each group consists of labels that contain in-
tents with highly semantic overlap, as shown in Azimuth (e.g., Top
Up Reverted and Top Up Failed belong to the same group). Then,
we prompted the model with the 3 examples of each class inside
that group, and we specifically requested it to generate 20 artificial
examples by paying attention to these confounding classes.13

Subsequently, we employed the SetFit approach across four dif-
ferent settings: 5-shot, 10-shot, 15-shot, and 20-shot. However, to
incorporate the generated data, we amended the traditional method-
ology of presenting the N original examples per class. Instead of
the 5-shot experiment, we used 3 examples from the original data
and 2 from the augmented. Similarly, the original-to-augmented
ratios for 10-shot, 15-shot, and 20-shot tasks were 3:7, 3:12, and
3:17, respectively. This allowed us to assess how well our model
performs with limited data and how effectively it can integrate and
learn from artificially generated examples.

Figure 3 shows the µ-F1 score for different few-shot settings.
Starting from the 3-shot setting with 76.7% µ-F1, one can generate
artificial data to get an essential boost to 81% µ-F1 as seen in the
augmented 5-shot setting (3 original examples + 2 generated). The
maximum performance increase is observed at the 10-shot augmen-
tation scenario with 81.6%. After this threshold, the quality of the
data generated decreases (see 15- and 20-shot settings), injecting
more noise into the model than the actual value. As expected, the

11https://datacentricai.org/neurips21/
12https://sites.google.com/view/icaif-synthetic/home
13Our prompt template for data generation can be found in https://anonymous.4open.
science/api/repo/data-prompt-4805/file/prompt.md?download=true.

Figure 3: The Micro-F1 Score for various few-shot settings.
In the Augmented Data (black) line, 3 of the examples each
time (out of the 5, 10, 15, 20) belong to the representative
samples that the human expert picked from the real data.

real data (even if they are challenging to obtain in such domains)
are far superior and more meaningful than the generated data (91.2
µ-F1 vs. 78.8 µ-F1 in the 20-shot setting).

8 ERROR ANALYSIS
Lastly, to understand our models’ limitations, we also performed an
exploratory error analysis in some of our top-performing models.
Specifically, we manually inspected the errors of GPT-3.5 (1-shot),
GPT-4 (3-shot), MPNet-v2 (10-shot), and MPNet-v2 (Full-Data).

8.1 Errors in LLMs
Themost misclassified labels by GPT-4 (3-shot) and GPT-3.5 (1-shot)
are shown in Table 6 along with their percentages. After inspect-
ing the samples and their predicted labels, we observe that the
label Get Physical Card was frequently misclassified as Change
Pin. This is potentially due to the presence of the word “PIN” in
all test instances, causing the vector embeddings to locate them
close to the decision boundary of the Change Pin class. As for the
Transfer Not Received By Recipient class, phrases indicative
of non-receipt were observed in only 20% of the test samples, which
could have complicated the classification task. The rest of the sam-
ples exhibited concerns related to transaction timing and recipient
visibility, pushing them towards the Transfer Timing class.

Gold Label Misclassifications

GPT-4 GPT-3.5

Get Physical Card 87.5% 87.5%
Transfer Not Received 62.5% 50.0%
Beneficiary Not Allowed 42.5% 60.0%

Table 6: Top misclassified labels, along with their misclassifi-
cation percentages (out of 40 test instances), for the GPT-4
(3-shot) and GPT-3.5 models (1-shot)

.

https://datacentricai.org/neurips21/
https://sites.google.com/view/icaif-synthetic/home
https://anonymous.4open.science/api/repo/data-prompt-4805/file/prompt.md?download=true
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The third label presented in the table, Beneficiary Not Allowed,
was incorrectly classified mostly as Declined Transfer by GPT-4
and GPT-3.5, respectively. The incorrect labeling could be attributed
to sentences that might seem ambiguous even for a human classifier.
For instance, sentences such as “I tried to make a transfer, but it
was declined.” and “The system does not allow me to transfer funds
to this beneficiary.” were misinterpreted as pertaining to Declined
Transfer class, due to the mention of terms like “declined” and
“does not allow”. The models, thus, failed to discern the actual issue
of beneficiary disallowance.

8.2 Errors in MLMs

Gold Label Misclassifications

Full-Data 10-shot

Top Up Failed 22.5% 17.5%
Transfer Timing 20.0% 45.0%

Table 7: Misclassification percentages (out of 40 test in-
stances) for the MPNet-v2 model when trained on Full-Data
vs. when trained on 10 samples per class.

In Table 7, the MPNet-v2 model displayed significant confusion
between in two labels when trained on Full-Data and 10 samples
per class. Specifically, after inspection, we see that for the gold label
Top Up Failed, the sentence “please tell me why my top-up failed”
was misclassified as Top Up Reverted, likely due to contextual
overlap between failed and reverted top-ups. Another source of
confusion involved the Transfer Timing gold label. Sentences
like “How many days does it take until funds are in my account?”
were misclassified as Pending Transfer or Balance Not Updated
After Cheque or Cash Deposit. The temporal aspect of the
query seems to direct the models towards other classes that also
involve time, thus highlighting challenges in differentiating specific
concerns related to money transfers.

8.3 About Overlapping Labels
We anticipate that this analysis will serve as a source of inspira-
tion for future work in financial intent detection. One possible
approach to mitigate these errors involves the adoption of hierar-
chical classifiers [7]. These classifiers could initially identify classes
within broad categories, such as transfers or top-ups, and subse-
quently classify them into more specific classes, such as pending
transfer vs. transfer timing and top-up failed vs. top-up reverted.
We believe that these methodologies could either be integrated
with “native” TensorFlow/PyTorch pipelines or simulated using
Chain-of-Thought prompting techniques [43] so the LLMs can dis-
tinguish fine-grained financial labels by thinking step-by-step or
class-by-class.

9 CONCLUSION AND FUTUREWORK
We conducted a comprehensive few-shot text classification study
using LLMs, MLMs and discussed their trade-offs between cost and
performance. We focused on Banking77, a financial intent detection
dataset with real-life challenges, such as its large number of intents
and overlapping labels.

Our results clearly demonstrate the effectiveness and efficiency
of in-context learning using conversational LLMs. This approach
serves as a practical and rapid solution for achieving accurate results
in few-shot scenarios and domains with restricted resources, like
finance. In detail, we demonstrated that LLMs, like GPT-3.5, GPT-4
and Anthropic Claude, can perform better than MLMs in some
limited-data scenarios (1- and 3-shot). On the other side, by fine-
tuning custom MLMs like MPNet-v2 with SetFit, we surpassed the
previous work of [28] in the 10-shot setting by 2.2 pp.

While LLM services minimize the technical expertise needed or
omit GPU training times, they can be considered costly for small or-
ganizations, given that they are accessed behind paywalls (we spent
740$ for 3-shot classification of ∼3k samples with GPT-4). After pre-
senting detailed pricing costs to help the community make better
decisions, we also demonstrated a cost-effective inference method
for LLMs. We utilized a semantic similarity retriever to return only
a small but substantial fraction of training examples to our prompt,
showing that this performs better than classic few-shot in-context
learning. Most importantly, using Claude with this approach, we
can save multiple (22) times the cost associated with LLM services
like GPT-4 (700$ less) while getting a higher classification score.

To showcase how financial companies can utilize LLMs in sce-
narios with limited data, we also used GPT-4 to generate artificial
data for data augmentation. We conclude that these generated data
points are helpful up to a specific threshold (7 generated examples),
after which our performance starts to drop, possibly due to the LLM
starting to generate noise.

Lastly, all of our top-performing Few-Shot experiments using
LLMs andMLMs were trained on representative data samples out of
a human expert-curated Banking77 subset. We provide this curated
dataset freely available in order to promote the development of
robust financial AI systems.

In future work, we plan to experiment with open-sourced LLM
alternatives, which may be suitable substitutes for closed-source
models, like LLaMA2 [39] and incorporating Chain-of-Thought
[43] techniques to mitigate the errors about the overlapping class
labels, as presented extensively in the error analysis section.
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